249 research outputs found

    A comprehensive classification of galaxies in the SDSS: How to tell true from fake AGN?

    Full text link
    We use the W_Ha versus [NII]/Ha (WHAN) diagram to provide a comprehensive emission-line classification of SDSS galaxies. This classification is able to cope with the large population of weak line galaxies that do not appear in traditional diagrams due to a lack of some of the diagnostic lines. A further advantage of the WHAN diagram is to allow the differentiation between two very distinct classes that overlap in the LINER region of traditional diagnostic diagrams. These are galaxies hosting a weakly active nucleus (wAGN) and "retired galaxies" (RGs), i.e. galaxies that have stopped forming stars and are ionized by their hot evolved low-mass stars. A useful criterion to distinguish true from fake AGN (i.e. the RGs) is the ratio (\xi) of the extinction-corrected L_Ha with respect to the Ha luminosity expected from photoionization by stellar populations older than 100 Myr. This ratio follows a markedly bimodal distribution, with a \xi >> 1 population composed by systems undergoing star-formation and/or nuclear activity, and a peak at \xi ~ 1 corresponding to the prediction of the RG model. We base our classification scheme on the equivalent width of Ha, an excellent observational proxy for \xi. Based on the bimodal distribution of W_Ha, we set the division between wAGN and RGs at W_Ha = 3 A. Five classes of galaxies are identified within the WHAN diagram: (a) Pure star forming galaxies: log [NII]/Ha 3 A. (b) Strong AGN (i.e., Seyferts): log [NII]/Ha > -0.4 and W_Ha > 6 A. (c) Weak AGN: log [NII]/Ha > -0.4 and W_Ha between 3 and 6 A. (d) RGs: W_Ha < 3 A. (e) Passive galaxies (actually, line-less galaxies): W_Ha and W_[NII] < 0.5 A. A comparative analysis of star formation histories and of other properties in these different classes of galaxies corroborates our proposed differentiation between RGs and weak AGN in the LINER-like family. (Abridged)Comment: Accepted for publication in MNRA

    An Evaluation of the Excitation Class Parameter for the Central Stars of Planetary Nebulae

    Full text link
    The three main methods currently in use for estimating the excitation class of planetary nebulae (PNe) central stars are compared and evaluated using 586 newly discovered and previously known PNe in the Large Magellanic Cloud (LMC). In order to achieve this we ran a series of evaluation tests using line ratios derived from de-reddened, flux calibrated spectra. Pronounced differences between the methods are exposed. Diagrams were created by comparing excitation classes with H-beta line fluxes. The best methods are then compared to published temperatures using the Zanstra method and assessed for their ability to reflect central star effective temperatures and evolution. As a result we call for a clarification of the term `excitation class' according to the different input parameters used. The first method, which we refer to as Exneb relies purely on the ratios of certain key emission lines. The second method, which we refer to as Ex* includes modeling to create a continuous variable and, for optically thick PNe in the Magellanic Clouds, is designed to relate more closely to intrinsic stellar parameters. The third method, we refer to as Ex [OIII]/H-beta since the [OIII]/H-beta ratio is used in isolation to other temperature diagnostics. Each of these methods is shown to have serious drawbacks when used as an indicator for central star temperature. Finally, we suggest a new method (Exrho) for estimating excitation class incorporating both the [OIII]/H-beta and the HeII4686 /H-beta ratios. Although any attempt to provide accurate central star temperatures using the excitation class derived from nebula lines will always be limited, we show that this new method provides a substantial improvement over previous methods with better agreement to temperatures derived through the Zanstra method.Comment: 14 pages, 18 figure. This peer reviewed paper has been accepted for publication in PAS

    Semi-empirical analysis of Sloan Digital Sky Survey galaxies III. How to distinguish AGN hosts

    Get PDF
    We consider the techniques to distinguish normal star forming (NSF) galaxies and active galactic nuclei (AGN) hosts using optical spectra. The observational data base is a set of 20000 galaxies extracted from the Sloan Digital Sky Survey, for which we have determined the emission line intensities after subtracting the stellar continuum obtained from spectral synthesis. Our analysis is based on photoionization models computed using the stellar ionizing radiation predicted by Starburst 99 and, for the AGNs, a broken power-law spectrum. We explain why, among the four classical emission line diagnostic diagrams, the [OIII]/Hb vs [NII]/Ha one works best. We show however, that none of these diagrams is efficient in detecting AGNs in metal poor galaxies, should such cases exist. We propose a new divisory line between ``pure'' NSF galaxies and AGN hosts. We also show that a classification into NSF and AGN galaxies using only [NII]/Ha is feasible and useful. Finally, we propose a new classification diagram, the DEW diagram, plotting D_n(4000) vs max(EW[OII],EW[NeIII]). This diagram can be used with optical spectra for galaxies with redshifts up to z = 1.3, meaning an important progress over classifications proposed up to now. Since the DEW diagram requires only a small range in wavelength, it can also be used at even larger redshifts in suitable atmospheric windows. It also has the advantage of not requiring stellar synthesis analysis to subtract the stars and of allowing one to see ALL the galaxies in the same diagram, including passive galaxies.Comment: 14 pages, 9 figures, accepted for publication in MNRAS (replaced on august 3, 2006, eqs 6 and 7 corrected

    Ionization correction factors and dust depletion patterns in giant HII regions

    Full text link
    We provide new ionization correction factors (ICFs) for carbon, nitrogen, neon, sulfur, chlorine, and argon in giant H II regions. The ICFs were computed using the most representative photoionization models from a large initial grid. The models were selected using an observational sample of 985 giant H II regions (GHR) in spiral galaxies and blue compact galaxies (BCG). The observational sample was also used to assign a weight to each model describing how well it agrees with observations in the [O III]/Hbeta versus [N II]/Halpha diagram. In addition to the ICFs we provide, for the first time, analytical expressions for their formal uncertainties. We use our ICFs to compute the abundances of nitrogen, neon, sulfur, and argon in our samples. Our abundances are robust within the adopted framework, but may require revision in the case of important changes in atomic data or in the spectral energy distribution of the ionizing radiation in H II regions. Considering the abundance patterns we obtained for the BCG sample (abundances for the GHR sample are less reliable) we find that oxygen is depleted into dust grains at a rate increasing with metallicity and reaching 0.12 dex at solar abundances. The discussion of possible depletion of sulfur and argon requires considering recent Type Ia Supernova yields, which are still uncertain

    The populations of planetary nebulae in the direction of the Galactic bulge

    Full text link
    We have observed 44 planetary nebulae (PNe) in the direction of the Galactic bulge, and merged our data with published ones. We have distinguished, in the merged sample of 164 PNe, those PNe most likely to prtain physically to the Galactic bulge and those most likely to belong to the Galactic disk. We have determined the chemical composition of all the 164 objects in a coherent way. We looked for stellar emission features and discovered 14 new [WR] stars and 15 new weak emission line central stars. The analyzed data led us to the following conclusions: (1) The spectral type distribution of [WR] stars is very different in the bulge and in the disk of the Galaxy. However, the observed distributions are strongly dependent on selection effects. (2) The proportion of [WR] PNe is significantly larger in the bulge than in the disk. (3) The oxygen abundances in [WR] stars do no appear to be significantly affected by nucleosynthesis and mixing in the progenitors. (4) The O/H gradient of the Galactic disk PNe population flattens in the most internal parts of the Galaxy. (5) The median oxygen abundance in the bulge PN population is larger by 0.2 dex than in the disk population seen in the direction of the bulge. (6) Bulge PNe with smaller O/H tend to have smaller radial velocities. (7) The oxygen abundance distribution of bulge PNe is similar in shape to that of the metallicity distribution of bulge giants, but significantly narrower. (8) The location of SB 32 (PN G 349.7-09.1) in the (V_lsr, l_II) diagram and its low oxygen abundance argues that it probably belongs to the halo population.Comment: 14 pages, 16 figures. Accepted for publication in A&

    The kinematics of the most oxygen-poor planetary nebula PN G135.9+55.9

    Full text link
    PN G135.9+55.9 is a compact, high excitation nebula that has been identified recently as the most oxygen-poor halo planetary nebula. Given its very peculiar characteristics and potential implications in the realms of stellar and Galactic evolution, additional data are needed to firmly establish its true nature and evolutionary history. Here we present the first long-slit, high spectral resolution observations of this object in the lines of Hα\alpha and He II 4686. The position-velocity data are shown to be compatible with the interpretation of PN G135.9+55.9 being a halo planetary nebula. In both emission lines, we find the same two velocity components that characterize the kinematics as that of an expanding elliptical envelope. The kinematics is consistent with a prolate ellipsoidal model with axis ratio about 2:1, a radially decreasing emissivity distribution, a velocity distribution that is radial, and an expansion velocity of 30 km/s for the bulk of the material. To fit the observed line profiles, this model requires an asymmetric matter distribution, with the blue-shifted emission considerably stronger than the red-shifted emission. We find that the widths of the two velocity components are substantially wider than those expected due to thermal motions, but kinematic structure in the projected area covered by the slit appears to be sufficient to explain the line widths. The present data also rule out the possible presence of an accretion disk in the system that could have been responsible for a fraction of the Hα\alpha flux, further supporting the planetary nebula nature of PN G135.9+55.9.Comment: accepted by Astronomy & Astrophysic

    Disordered Bose Einstein Condensates with Interaction in One Dimension

    Full text link
    We study the effects of random scatterers on the ground state of the one-dimensional Lieb-Liniger model of interacting bosons on the unit interval in the Gross-Pitaevskii regime. We prove that Bose Einstein condensation survives even a strong random potential with a high density of scatterers. The character of the wave function of the condensate, however, depends in an essential way on the interplay between randomness and the strength of the two-body interaction. For low density of scatterers or strong interactions the wave function extends over the whole interval. High density of scatterers and weak interaction, on the other hand, leads to localization of the wave function in a fragmented subset of the interval

    SBS 0335-052W: The Lowest-Metallicity Star-Forming Galaxy Known

    Full text link
    We present 4-meter Kitt Peak telescope and 6.5-meter MMT spectrophotometry of the extremely low-metallicity galaxy SBS 0335-052W, the western companion of the blue compact dwarf galaxy SBS 0335-052E. These observations have been combined with published 10-meter Keck data to derive for the brightest region of SBS 0335-052W an oxygen abundance 12+logO/H=7.12+/-0.03. This makes SBS 0335-052W the lowest metallicity star-forming galaxy known in the local universe. Using a Monte Carlo technique, we fit the spectral energy distribution of SBS 0335-052W to derive the age of the oldest stars contributing to its optical light. We find that star formation in SBS 0335-052W began less than 500 Myr ago, making it a likely nearby young dwarf galaxy.Comment: 13 pages, 3 figures, accepted for publication in the Astrophysical Journa
    • 

    corecore